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A two-dimensional Galerkin formulation of the three-dimensional Oberbeck- 
Boussinesq equations is used to describe the onset of convection in an infinite rigid 
horizontal channel uniformly heated from below. The dependence of the critical 
Rayleigh number on the channel aspect ratio is determined and results are compared 
with those of an idealized model studied by Davies-Jones (1970). Asymptotic results 
are derived for both narrow and wide channels, corresponding to limits of small and 
large aspect ratios respectively. In the latter case the main core flow, consisting of 
two-dimensional rolls with axes perpendicular to the vertical walls of the channel, 
can be represented by the solution of an amplitude equation. Close to the walls, 
however, the motion remains fully three-dimensional and a reversal of the vertical 
flow is associated with a local subdivision of each main roll into a pair of co-rotating 
rolls. 

1. Introduction 
Thermal convection is an important mechanism of heat and mass transfer in many 

geophysical, astrophysical and technological areas. There are an increasing number 
of applications in modern man-made environments such as energy storage systems, 
reactors and solar collectors where the flow is partly or completely confined. It is 
known from experimental work concerned with predicting the transition to 
turbulence in a fluid layer heated from below that the walls of the container have an 
important influence on the cell structure, even in layers of large lateral extent 
(Koschmieder 1966). It is therefore important, in gaining an understanding of the 
results of such experiments, to develop a theoretical treatment which takes full 
account of the lateral walls. Significant advances have been made in this area over 
the last twenty years. Davis (1967) used a Galerkin method to model the three- 
dimensional Boussinesq equations in a rectangular box and showed that the 
preferred mode of convection takes the form of horizontal rolls with axes aligned 
parallel to the shorter side of the box. Later Davies-Jones (1970) showed that the 
‘finite rolls’ used in the Galerkin procedure (cells with two non-zero velocity 
components dependent on all three spatial coordinates) cannot be exact solutions of 
the linearized equations and boundary conditions, and developed an analytical 
model for the case of an infinite rectangular channel with stress-free horizontal 
boundaries where the full three-dimensional solution can be constructed. The results 
obtained from the solution of an eighth-order ordinary differential eigenvalue 
problem showed that the preferred mode closely resembles the finite-roll solutions of 
Davis. Further work on the rectangular box using an improved three-dimensional 
Galerkin simulation was reported by Catton (1970). 
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Nonlinear effects in rectangular containers of large horizontal planform were first 
considered by Segel (1969) and later by Brown & Stewartson (1977), who confirmed 
theoretically the preference for rolls parallel to  the shorter side. At finite aspect 
ratios, simpler two-dimensional models where the rolls are aligned with axes parallel 
to the lateral walls (Drazin 1975) do not correspond to the preferred mode of 
convection established by Davies-Jones (1970) although the consideration of such 
models a t  large aspect ratios (Daniels 1978 ; Cross et al. 1983) has led to some progress 
in the understanding of how the lateral walls influence the wavelength selection 
process at finite amplitudes. Experiments by Buhler, Kirchartz & Oertel (1979) on 
Rayleigh-Be'nard convection in long rectangular boxes have demonstrated how, a t  
small Prandtl numbers, the wavelength of the convective rolls (which are aligned 
parallel to the two ends, consistent with Davis' numerical results) increases as the 
Rayleigh number is raised. A similar behaviour has been observed in shallow circular 
cylinders heated from below (Koschmieder & Pallas 1974). While numerical 
simulations for rectangular boxes (Buhler et al. 1979; Kessler 1987) are able to 
reproduce many of the observed features of the flow including the wavelength 
adjustment, a complete understanding requires a theoretical description of the 
adjustment mechanism. With this in mind, the most useful theoretical model of the 
long rectangular box appears to be one based on the infinite rectangular channel of 
Davies-Jones (1970) but with fully rigid bounding walls, necessitating a two- 
dimensional Galerkin representation of the cross-channel dependence but allowing 
an analytical description in terms of the third coordinate measured along the length 
of the channel. It is the latter dependence that corresponds to any adjustment in the 
wavelength of the roll pattern and it is anticipated that the influence of the distant 
endwalls of a realistic, three-dimensional long rigid box can be taken into account 
using the multiple-scaling and matching methods developed for the simpler two- 
dimensional models by Daniels (1977, 1978) and Cross et al. (1983). 

The first requirement, then, is a description of the linearized solution of the three- 
dimensional Boussinesq equations at  the onset of convection in an infinite rectangular 
channel with rigid walls, and this is the problem considered here. Unlike the Galerkin 
procedures used by Davis (1967), Catton (1970) and others, where three-dimensional 
solutions are constructed by superposing sets of finite-roll solutions in the two 
horizontal directions, here a Galerkin representation is required only for the two- 
dimensional cross-channel dependence. This allows trial functions to be constructed 
that take full account of the cross-channel horizontal velocity component, which 
would be set to zero in the corresponding finite-roll approximation. The governing 
equations and boundary conditions are stated in $ 2. The Galerkin formulation 
is described in $3 and results for the dependence of the critical Rayleigh number 
on the aspect ratio of the channel, 2a (width/height), are given. For a > a,, where 
a < a, < 1 ,  it is found that the vertical velocity profile across the channel reverses 
sign near each sidewall. A re-examination of the idealized model with stress-free 
horizontal boundaries studied by Davies-Jones (1970) shows that the same 
phenomenon occurs there and streamline computations identify a subdivision of the 
main-cell circulation in the core into two separate curved cells near each sidewall. 
This behaviour is confirmed by an asymptotic description of the idealized flow for 
wide channels (a+ 00) in $4.1. The flow domain can be formally divided into a main 
core zone where, to leading order, the circulation is two-dimensional and parallel to 
the channel walls, and sidewall regions where it remains fully three-dimensional. The 
description of the core solution involves the use of the linearized form of the 
amplitude equation first given by Segel (1969) and Newel1 & Whitehead (1969). 
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Asymptotic forms of the critical Rayleigh number and wavenumber for the 
idealized problem at small aspect ratios (ai.0) are considered in $54.2 and 4.3. Here 
the thermal conditions on the sidewalls are of primary significance and results are 
obtained for both conducting and insulating walls. In 555 and 6 the various 
asymptotic results are extended to  the case of the fully rigid channel. At large aspect 
ratios (a+ co) this involves the derivation of the linearized form of the appropriate 
amplitude equation. Boundary conditions obtained by matching with solutions near 
the sidewalls allow the corrections to the critical Rayleigh number and wavenumber 
of the corresponding infinite layer to be determined. At small aspect ratios (a + 0) a 
different subdivision of the flow domain, into a main core region and end zones near 
the upper and lower boundaries, is required. Here the leading approximations to the 
critical Rayleigh number and wavenumber are found to coincide with those of the 
idealized problem. A brief discussion of the results is given in $7 .  

2. Governing equations 
Fluid is contained in an infinite horizontal rectangular channel IyI < a, IzI < t ,  

where x, y, z are coordinates non-dimensionalized with respect to  the depth of the 
channel d ,  and with the x-axis along the centre of the channel. Steady linear motions 
in the Boussinesq approximation are governed by the non-dimensional equations 

(2.4) 

v e + W  = 0, ( 2 . 5 )  

aP 
a Z  

V'W+ R0-- = 0, 

where 0 and p are non-dimensional measures of the temperature 8* and pressure p* 
relative to the static, vertically stratified basic state : 

(2.6) 

(2.7) 

Here 0: T$A8* are the constant temperatures of the upper and lower surfaces of the 
channel, po is the fluid density at the mean temperature ez, g is the acceleration due 
to gravity which acts in the negative-z direction and a, v and K are the coefficient of 
thermal expansion, kinematic viscosity and thermal diffusivity of the Auid 
respectively. The velocity components u, v, w are non-dimensionalized with respect 
to K/d,  and in (2.4) the Rayleigh number R is defined by 

0* = 0: -A@% + A0*0, 

p* = p t  -gpo dz( 1 + AB*z) + P ~ K V  d-2p. 

R = a g A 6 * d 3 / ~ v .  (2.8) 

For a channel with rigid, perfectly conducting walls the boundary conditions at 
y = +a (121 < +) and z = *+ (lyl d a)  are 

u = v = w = e = o  (2.9) 
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and since the primary interest is in applications to long totally enclosed boxes, the 
volume flux down the channel must be zero 

(2.10) 

thereby excluding from consideration pressure-driven flows of Poiseuille type, but 
not, in general, velocity and temperature fields that remain bounded as 1x1 --f 00. The 
equations (2.1)-(2.5) are independent of the Prandtl number of the fluid and so the 
critical Rayleigh number for instability in the form of stationary convection depends 
only on the aspect ratio of the channel. A complementary numerical study of the 
problem with insulating sidewalls has been made by Luijkx & Platten (1981). 

3. Galerkin formulation 
Normal-mode solutions of (2.1)-(2.5) and (2.9) may be expressed in the form 

(0, u,v ,w , p )  = eigz(O, iU, V, W ,  P )  (y, z ) ,  (3.1) 

where q is a wavenumber for variations along the channel. Substitution into 

av aw -qu+-+- = 0, 
ay a2 

(2.1)-(2.5) gives 

(3.2) 

V'U-qP = 0, (3.3) 

ap 
V 2 w + ~ @ - -  = o, (3.5) az 

V20+ W = 0, (3.6) 

where (3.7) 

Elimination of P and U using the first two equations leads to the coupled system 

(3.9) 

v20+ W = 0, (3.10) 

for V ,  W and 0, to be solved subject to the boundary conditions 

(3.1 1 )  
av 
a Y  

V = - = W = 0 = 0  o n y = f a ,  

(3.12) 

The flux condition (2.10) is then automatically satisfied, from integration of (3.2) 

aw 
az v = W = - - - = @ = o  o n z = f '  2' 
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over the cross-section of the channel. The reduced two-dimensional system 
(3.8)-(3.12) provides a convenient formulation for application of the Galerkin 
method in which the solutions are expressed as 

N N N 

k-1 k-1 k-1 
8 = c ak8k(y,z), w = c bkWk(Y,z), v = 2 ck vk(y,z), 

with the trial functions taken to be 

XY 
2a 8, = cos(2m-1)-cos(2n-l)7~~, Wk = Cn(z)  

sin2n7cz (m = 1,2, ..., n = 1,2, ...). 

Here C, and S, are the beam functions defined by 

sinh p,,, g sin p,,, g 
Cn(z )  = coshiA, COB@,, sm(g) = sinh+, sin+, ' 

-- cash A, z cos A, z -~ 

where An and p, are the positive roots of the equations 

tanh $A + tan +A = 0, coth $t - cot & = 0. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Their properties are discussed by Harris & Reid (1958). The functions (3;14) are 
chosen to satisfy the boundary conditions (3.11), (3.12) and to have the symmetries 
in y and z expected of the leading eigenmode. The summations in (3.13) for k = 1, . . . , 
N are taken over all integer combinations (m, n) following the ordering shown in table 
1 below. 

The forms (3.13) are substituted into the three equations (3.8)-(3.10) which are 
then multiplied by V,, WE and 8,- (k = 1,2, ..., N )  respectively and integrated over 
the cross-section of the channel to obtain a set of 3N linear algebraic equations for 
the coefficients ak, b,,c,(k = 1,  ..., N). These are 

(3.19) 

Orthogonality properties of the sinusoidal and beam functions in (3.14) imply that 
only certain terms make non-zero contributions to these equations. Thus if (m, a) are 
the dual parameters associated with k, the first term in (3.17) contributes only when 
f i  = n, although the second always contributes. In (3.18) the first and third terms 
contribute only when m = m while the second always contributes. Finally, in (3.19) 
the first term only contributes when k = k (m = m and = n) and the second when 
rii = rn. All of the integrals that do contribute can be evaluated analytically using 
results given by Reid & Harris (1958) and their values (see Appendix) form the non- 
zero elements of the 3N x 3N coefficient matrix whose determinant must vanish in 
order that the system has a non-trivial solution for a,, bk, ck (k = 1, .. ., N). For a 
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given aspect ratio a the first zero of the determinant (corresponding to the lowest 
value of R )  determines the location of the neutral curve for a stationary disturbance 
of wavenumber q. The zero was found using Newton's method to adjust the value of 
R at a given value of q, working to within a tolerance of six significant figures in the 
value of R. The minimum value of R as a function of q was located numerically for 
truncation levels up to N = 10, at which point a reasonable level of convergence was 
achieved, probably to within f% in both the critical wavenumber q, and critical 
Rayleigh number R,. A typical set of results for a square channel (a = i) is shown in 
table 1, and the corresponding neutral curves in figure 1. Further extensive 
calculations for the square channel by Daniels & Ong (1988) have shown that, for 
N = 25, q, = 3.3812 and R, = 2944.3, and higher modes of convection have also been 
calculated using the present method. 

The critical Rayleigh number and wavenumber are shown as functions of the 
aspect ratio in figures 2 and 3, along with asymptotic results for small and large 
values of a discussed in $$5 and 6. I t  is interesting to note that for aspect ratios 
a 2 0.7 the critical wavenumber q, falls below the value 3.117 for the infinite layer, 
just as it does in the corresponding idealized problem with stress-free horizontal 
boundaries studied by Davies-Jones (1970). This behaviour appears to be related to 
the three-dimensional nature of the flow near the sidewalls which is discussed in 
detail in $4. Velocity and temperature profiles in the cross-section of the channel 
(figures 4 and 5) indicate an interesting behaviour for large aspect ratios (for example 
a = 1, figure 5 )  in which the vertical velocity near the sidewall reverses sign. 
Although this behaviour was not reported by Davies-Jones (1970) a closer 
examination of the stress-free model demonstrates that i t  also occurs there, 
suggesting that it is associated with the rigidity of the sidewall. 

In the idealized model the boundary conditions (2.9) a t  z = &i are replaced by 

(3.20) 

allowing the leading eigensolutions (3.13) to be expressed in the form 

0 = @(y)sinn(z+$), W = v(y)sinn(z+$),  V = ~ ( y ) c o s n ( z + ~ ) ,  (3.21) 

with U = l7(y)cosn(z+ij). Substitution into (3.8)-(3.10) and elimination of W 
gives 

($-cY~) P = n - l { ( $ - d 2 J - R } g ,  (3.22) 

with boundary conditions 

(3.23) 

where 62 = q2+n2.  The leading mode, for which 6 is even and V is odd, can be 
expressed as 

@ = x djcoshriy, V = x djpjsinhrjy+d,sinh6y, (3.24) 
3 3 

j=1 j=1 

where pi = Rnri/s5 (3.25) 
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m n N 9, Rc a1 b, a2 6, c2 

- 1 1 1 3.4966 3115.61 0.6441 14.76 __ - 
1 2 2 3.5126 3056.47 0.6633 15.19 0.0263 0.4080 -0.2437 
2 1 3 3.4036 2972.99 0.3447 7.712 0.0136 0.1934 -0.1616 
2 2 4 3.4031 2971.02 0.3520 7.873 0.0137 0.2130 -0.2307 
1 3 5 3.4015 2964.28 0.3554 7.943 0.0136 0.2275 -0.2637 
2 3 6 3.4016 2964.09 0.3553 7.941 0.0136 0.2275 -0.2626 
3 1 7 3.3881 2952.29 0.3440 7.666 0.0131 0.2181 -0.2567 
3 2 8 3.3881 2952.02 0.3448 7.682 0.0131 0.2218 -0.2616 
3 3 9 3.3881 2951.98 0.3447 7.680 0.0131 0.2218 -0.2617 
1 4 10 3.3871 2950.03 0.3464 7.715 0.0131 0.2265 -0.2663 

TABLE 1. Convergence of the Galerkin scheme for a = t ;  the  coefficients are normalized with 
c1 = 1 

2500 
2 3 4 e  4 

4 

FIGURE 1. Convergence of the neutral curve with truncation level N for a = S. 

and r i  = sj + S2, where sj (j = 1,2 ,3)  are the three roots of 

S~-R$-K'R = 0, (3.26) 

which, for the range of interest, R > 4n4, 
1 1 1 

8 2  53 

P 2  T2 P 3  r9 

/I1 tanh r1 a p2 tanh r2 a p3 tanh r3 a 

are real and distinct. From (3.23), 

0 d, cosh r1 a 

6 ] [ d3 d2coshr2a] cosh r3 a = [ i] (3.27) 

tanh &a d, cosh &a 
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4 8 12 16 
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FIGURE 2. Dependence of the critical Rayleigh number on aspect ratio for a rigid channel with 
conducting sidewalls. Relevant asymptotic results (4.25) and (5.23) for small and large values of a 
are shown by dashes. 

and the neutral curve is determined by locating the zeros of the determinant of the 
coefficient matrix, a task that is simplified by the fact that for R > Y n 4  the 
determinant is either purely real or purely imaginary. Results for the neutral curves 
agreed with those given by Davies-Jones (1970), whose analysis did not explicitly 
incorporate the symmetry of the solution. Profiles of 0, W and V (figure 6 )  exhibited 
the same tendencies as those of the fully rigid problem, with a region of reversed 
vertical flow near the sidewalls for aspect ratios a > a, where t < a, < 1 ; velocity 
contours (figure 7) clearly show the sidewall region although those given earlier by 
Davies-Jones are not sufficiently detailed to do so. The same behaviour occurs if the 
sidewalls are adiabatic, and further results for this case are reported by Chana (1986). 
The behaviour can best be interpreted physically by plotting the three-dimensional 
streamlines of the flow. On taking the real parts of (3.1) and using (3.21) the 
streamline passing through an arbitrary point (zo, yo, zo) is found to be given by 

(3.28) 

Figures 8 and 9 show typical members of this family of curves for two values of a. 
A t  the smaller aspect ratio (figure 8), particles move in closed loops distorted only 
slightly by the cross-channel velocity component w, so that the motion closely 
approximates a finite-roll pattern with roll axis perpendicular to the sidewalls of the 
channel. At the larger aspect ratio (figure 9) a similar flow occurs in the centre of the 
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FIQURE 3. Dependence of the critical wavenumber on aspect ratio for a rigid channel with 
conducting sidewalls. Relevant asymptotic results (4.25) and (5.23) for small and large values of a 
are shown by dashes. 
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FIGURE 4. Velocity and temperature profiles at the onset of convection (R, = 2950, qe = 3.39) in 
a rigid channel with conducting sidewalls and a = #. 
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q, = 2.95) in 

L 

FIGURE 6. Velocity and temperature profiles at the onset of convection for the idealized channel 
with conducting sidewalls: (a) a = a (R,  = 1654.74, q, = 2.7021), ( b )  a = 1 (R, = 827.57, q, = 
2.231 5). 

FIGURE 5.  Velocity and temperature profiles at the onset of convection (R, = 1874, q, = 2.95) in 
a rigid channel with conducting sidewalls and a = 1. 
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- 
0 1 2 

X 

FIGURE 7. Horizontal planform of the cells at  the onset of convection in the idealized channel 
with conducting sidewalls and a = 2, showing vertical velocity contours at z = 0. 

FIGURE 8. Projections of three streamlines A ,  B, C in the coordinate planes at the onset of 
convection for the idealized channel with conducting sidewalls and a = 6. 

channel but near the sidewalls the reversal of the vertical velocity is seen to be 
associated with a splitting of each main roll into a pair of curved corotating rolls. The 
flow must be three-dimensional since finite-roll solutions are not exact solutions of 
the governing equations in the presence of rigid sidewalls. When the walls are 
sufficiently far apart, the local bending of rolls appears to necessitate the splitting of 
the main roll. Physically, this may be the only way in which the fluid motion can 
retain something close to its characteristic critical wavelength near the sidewalls of 
the channel. 
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FIGURE 9. Projections of three streamlines A ,  B, G in the coordinate planes a t  the onset of 
convection for the idealized channel with conducting sidewalls and a = 2. 

4. Asymptotic results for the idealized problem 

(1970) are derived. 
4.1. a + c o  

The critical Rayleigh number approaches the value ?n4 associated with an infinite 
horizontal layer and numerical results suggest that locally the neutral curve is 
defined by 

where R and q remain finite as a -+ 00. It follows from (3.26) that  

In  this section some asymptotic results for the problem studied by Davies-Jones 

(4.1) R - 7x4 + a-4R2, q2 - a-2- 
2 9 ,  

#+ - = ($R*qp (4.3) where 

and the leading contributions to the coefficient matrix in (3 .27)  are :I’ (4.4) 

1 1 1 
a 2  3 8  - p 3x2 - gn 

2 3 3  
- 3xw;/a2 37rwl/a2 d% 

9n8/42/2  - 3xa-lw, tan w+ 3 n a - l ~ -  tanh w- 1 

(4.5) w+ tan w, + w- tanh w- = 0. 

The lowest solution branch for R defines the neutral curve as a function of p and the 

[ 
where terms of relative order a-2 are neglected. The leading contributions to the 
determinant of (4.4) cancel but the order a-l terms balance only if 
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critical Rayleigh number is determined by the additional condition dR2/dq = 0 from 
which it is found that R = Rc = 13.905 and Q =  = 3.1959. Thus 

JL 

R, - yn4+ 193.36~-~, q, - -- 0.71933~-~ asu-t 00. (4.6) 
d 2  

The same results are also valid for insulating sidewalls and table 2 indicates a 
favourable comparison with numerical solutions obtained from both (3.27) and the 
corresponding adiabatic system. 

The method of matched asymptotic expansions provides an alternative means of 
obtaining (4.6). The flow domain is subdivided into a core region IYI < 1, where 
Y = y / a ,  and sidewall regions where y f a  = O(1). In the core the slow spatial 
variation can be represented by a temperature field 

e - &A(x, Y)sinz(z+$), (4-7) 

where the scaled coordinate X = x/a2  accounts for wavelength adjustments in the 
neighbourhood of the critical value 1 / 2 .  Then if R is defined by (4.1) the linearized 
versions of the amplitude expansions of Newel1 & Whitehead (1969) and Segel(l969) 
imply that the amplitude function A satisfies 

Furthermore, Brown & Stewartson (1977) demonstrate that the appropriate 
boundary conditions at Y = k 1 are ~ , 

-1QX - 
The solution of (4.8) is expressed in the form A = e T A (  Y )  so that p is equivalent 
to the constant defined in (4.1) and it follows that the leading even mode is 

K =  ycoso, Y+(l-y)cosho- Y ,  (4.10) 

where u* are defined by (4.3). This exists, subject to (4.9) provided that Q and R are 
related by (4.5) and y-l = 1 -sech w- coso+. The solution (4.10) is normalized such 
t h a t K =  1 at Y = O .  

The form (4.7) is inappropriate near each sidewall where there must be an 
adjustment to the full boundary conditions, which, in the conducting case, are given 
by (2.9). The solution is fully three-dimensional and is generated by the quadratic 
dependence of A as IY+l)+O. Thus it is expected that in the region where 
y" = y+a  = 0(1), 

and, since R x qz4, substitution into (3.22) gives the coupled system 

(4.11) 

to be solved subject to the boundary conditions 

(4.13) 
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Asymptotic 
Conducting sidewalls Insulating sidewalls formulae (4.6) 

a 9, R,  q c  RC 4% Rc 
1 2.2315 827.57 2.2680 799.44 1.5021 850.87 
2 2.0977 673.60 2.1013 673.57 2.0416 669.60 
3 2.1460 660.58 2.1449 660.58 2.1415 659.90 
4 2.1760 658.44 2.1756 658.43 2.1765 658.27 
5 2.1918 657.88 2.1917 657.88 2.1925 657.82 

TABLE 2. Comparison of numerical results for R, and qc with the asymptotic formulae (4.6) for 
large aspect ratios 

The general solution of (4.12) that avoids exponential growth as ij+ 00 is 

8" = CZ, + 6, i j  + a", Q*+ 8, ~3 + a4 e-%g, (4.14) 

(4.15) 

Matching with the core solution as @+ GO requires that 

(4.16) 

5, = -6, = 4d2/9n2, a", = - (1+31/3)6, /31/2~~,  a", = 32/36,/2/2. (4.17) 

In the core the vertical velocity corresponding to (4.7) is given by 

w - Zn2A( Y ) ,  (4.18) 

whereas in the sidewall region it is given by 

(4.19) 

This shows explicitly the region of reversed flow near i j  = 0. In fact the temperature 
profile (4.14) also reverses near d = 0 ; this trend is evident in figure 6 ( b )  where = 1,  
and the behaviour was confirmed by a computation at a higher aspect ratio, a = 5.  
Table 3 shows a comparison of the asymptotic formulae (4.14), (4.19) with 
numerical results for a = 5 based on the equivalent normalization 6(0) = 1.  Similar 
formulae for ahabatic walls also agree well with numerical results (Chana 1986). 

4.2. a + 0 ; conducting sidewalls 

Numerical results and a ' finite-roll' approximation due to Davies-Jones (1970) 
suggest that for small aspect ratios and conducting sidewalls the neutral curve is 
approximated by 

R - % + % ,  a4 a q 2 - : + q , ,  (4.20) 

where R,, R,, q1 and q2 are finite as a+O. Then from (3.26) 

r1 - R\(a-'+i[q,+@,R;;]R;i), r2 N i R i ( ~ - l - i [ q , - @ ~ R ; t ] R ; i ) ,  r3 - (ql/a)g 
(4.21) 



Onset of Rayleigh-Behard convection in a rigid channel 27 1 

Y w a-*c 63 a-28" 

-5 0 0 0 0 
-4.875 -0.161 -0.159 -0.0013 -0.0020 
-4.75 -0.207 -0.216 -0.0005 -0.0020 
-4.625 -0.170 -0.199 0.0034 0.0009 
-4.5 -0.066 -0.118 0.0170 0.0070 
-4.375 0.097 0.019 0.0215 0.0166 

Table 3. Comparison of numerical results for the temperature and vertical velocity near the 
sidewalls with the asymptotic results (4.14), (4.19), for a = 5 

and the condition for a non-trivial solution of (3.27) reduces to 

(8,-s,) D-inqi@a-ftanhr,a = O(a-f), (4.22) 

where D = /3,(r3 tanh Sa-S tanh r3 a). Since D - - R, qf/3xa: as a + 0, it follows from 
(4.22) that 

2 q , 1 4 / 3 x 2 a + t a n [ 4 - ~ ( q , - 4 R 2 R ; ~ ) R ; ~ a ]  = 0(1 ) ,  (4.23) 

and this is only possible if R, = m4n4/16 (rn = 1,3,5,  ...) and 

R 2 - 1 2  - ,n q,(mZ+ 1 2 q 3  (4.24) 

The leading mode corresponds to m = 1 and the additional condition dR,/dq, = 0 
determines the critical values Rzc = 21/3n2 and qlc = 2 4 3  associated with the 
minimum point of the neutral curve. Thus 

n4 22/3n2 
R, - - , qc - (243/a); as a+O. 

1 6 a 4 + a ~  
(4.25) 

The closeness of the sidewalls severely restricts the instability leading to the large 
value of R,. Although the wavelength is small compared with the height of the 
channel it is large compared with the width. 

4.3. a + 0 : insulating sidewalls 

0 on y =  &a 
Here ae 

aY 
u = v = w = - =  (4.26) 

and the non-zero elements of the first row of the matrix in (3.27) are replaced by 
ri tanh r r a  (i = 1,2,3). If the same scalings (4.20) are assumed the result (4.22) is 
replaced by 

a P 4  (tan @ - tanh @) D = O ( d  tan @) (4.27) 

and so tan Ri - tanh = 0 ; the solutions R, = Rim) (m = 1,2,  . . .) define a family of 
horizontal modes, but here RI1) = 0 indicating that the leading one is actually 
associated with different scalings of R and q. The numerical results suggest that for 
this mode 

(4.28) 
R, R,  

R - -+-, q2 N q1+aq2, 
a2 a 

with R,,RE,,ql and q, finite as a+O, so that 

(4.29) 
r, - a-tfEi ( 1 + +[R, R;t + q, + ix21 fE;;a), 

r2 - ia-:a( i + g[R, f2;t - ql - in21 R;ia), rg - d. 
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Conducting sidewalls Insulating sidewalls 

Numerical Asymptotic (4.25) Kumerical Asymptotic (4.32) 

a q c  Rc q c  Rc q c  RC q c  RC 
0.5 2.7021 1654.7 2.6322 370.92 2.4962 1277.6 3.1416 473.74 
0.2 4.0223 12251 4.1618 8078.7 2.8542 3799.4 3.1416 2960.9 
0.1 5.7281 10843x 10 5.8857 95070 3.0407 12718 3.1416 11844 
0.05 8.1904 12955x 10' 8.3236 12476x 10' 3.1133 48260 3.1416 47374 

TABLE 4. Comparison of numerical results for R, and qc with the asymptotic formulae (4.25) 
and (4.32) for small aspect ratios 

The condition for a non-trivial solution now reduces to 

$z(ql ++):@a + D = 0, (4.30) 

where D = (rl s2 Lanh r1 a- r2 s1 tanh r2 a) D and in this case D - - (ql + x2)iqlRl a/3n 
as a - 0. Then D is also of order a and the balance of terms in (4.30) yields 

(4.31) 

The critical parameter values determined by the condition dRl/dql = 0 are El, = 
12n2 and qlc = x2,  giving 

R c ~  127c2aP2, qc - 7 c  as a+O. (4.32) 

Thus the critical Rayleigh number is significantly lower than in the conducting case, 
and the wavelength significantly higher, consistent with the numerical calculations 
of Davies-Jones (1970). In  fact it is seen that for insulating sidewalls the critical 
wavelength in a narrow channel is independent of aspect ratio and numerically equal 
to the depth of the channel, so that the thin rolls occupy square cross-sections 
parallel to the plane of the sidewalls, equivalent to a Hele-Shaw approximation to 
the motion. 

The formulae (4.25) and (4.32) are compared with numerical results in table 4. 

5. Asymptotic results for the rigid channel : a --f co 

alternative approach described in $4.1. Thus it is assumed that 
In the absence of a matrix form equivalent to (3.27) it is necessary to adopt the 

R - R , + u - ~ R ~ ,  q2 N qi-a-2p as a+w, (5.1) 

where R, = 1707.76 and qo = 3.117 are the critical Rayleigh number and wave- 
number for the infinite layer with rigid horizontal boundaries, and an amplitude 
equation equivalent to (4.8) is sought in order to describe the core motion where 
IY1 < 1. A simple method of deriving this equation is to eliminate V and W in 
(3.8)-(3.10), (3.12) giving the following sixth order system for 0: 
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The cross-channel core scaling and the correction to qi in (5.1) combine as a single 
operator 

a 2  
L = -+q, 

aY2 

so that 

and an expansion for 0 as a --f 0 can proceed in the form 

0 = go( Y ,  z )  + a+g,( Y, z )  + ~ - ~ g , (  Y ,  z )  + . . . , 

Now the solutions of (5.6) and (5.7) can be written 

90 = 4y)go(47  91 = - L ~ ( y ) g l ( ~ ) + ~ l ( y ) g o ( z ) ,  (5.9) 

where go satisfies (5.6) but for the purpose of defining gl may be construed as the 
solution associated with the neutral curve R = R(q) of the generalized version of 
(5.6) in which qo --f q and R, -+ R ,  and then 

(5.10) 

The existence of the solution for g1 is equivalent to the fact that dR/dq = 0 at 
R = R,; A1 is associated with a possible complementary solution for g1 which will 
not affect the amplitude equation for X(Y). This equation is now determined from 
the solvability condition 

ti 
J -_ lxoBdZ=Xi, 

a 

of the system for g2. Here g is the adjoint of go, satisfying 

(5.11) 

{(-&qir+Roqi}g= 0; g =  - dg dz = (fi --2q, 2)d2q- dz2 - 0 (z  7 kt., (5.12) 

and from (5.8) 

xo = L2A{  3 ($- q;! - Ro} ql - { 3L2($-qt) + B2q:) Ago, (5.13) 
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Thus 

(5.14) 

(5.15) 

(5.16) 

The even solutions of the linear systems for go, gl and g can be expressed in terms of 
hyperbolic functions whose coefficients are determined by application of the 
boundary conditions at z = 4. Using this method the value of c is determined as 0.154 
consistent with the value quoted by Kelly & Pal (1978) in their derivation of the Y -  
independent version of (5.15). In the stress-free case g1 can be taken as zero and, since 
qo = n / d 2 ,  i t  is seen that (5.16) gives c = i, in agreement with (4.8). It should also 
be added that although higher-order corrections to R and q in (5.1) are envisaged, 
along with order a-l and terms in (5.5) forced by the sidewall reaction (see below), 
their inclusion in the analysis does not influence the form of (5.15). 

The core velocity and pressure fields corresponding to (5 .5)  are easily obtained 
from (3.2)-(3.6). At leading order it is found that 

(5.17) 

(5.18) 

so that in the core the cross-channel velocity component is an order-of-magnitude 
smaller than the other two components, confirming the two-dimensional nature of 
the motion. The values of q and B that determine the corrections to the critical 
wavenumber and Rayleigh number due to the presence of the lateral walls are found, 
as in the stress-free case, by matching the solution of (5.15) to an appropriate three- 
dimensional solution near each sidewall. If the same order-of-magnitude arguments 
apply then, for the region near y = -a, 

(0, U ,  V ,  W ,  P )  - a-2(e",c,V", ( j j , z ) ,  (5.19) 

where e"(jj, z )  satisfies the system (5.2) in which y -+#, q -+ qo and R + R,, and d = y + a. 
Upon exclusion of solutions that are exponentially large as d +  00, it is found that 

e" = (Go + Gl g) go + G2(g2gfo - 2gJ + G3(g3g0 - 6gg1) + Z bn g, (2) e-ang, (5.20) 
Q ) *  

n-1 

where g, and a, are determined by solutions of the eigenvalue problem 
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for which Re (a,) > 0 and where w = aL-qi. It is expected that there are three 
infinite sets of these, although the first members of two of the sets correspond to 
a, = 0 and the special solutions associated with the further arbitrary constants 
Go, ..., a3. 

Solutions for the other dependent variables associated with the temperature field 
(5.20) can easily be constructed and, in addition, there are solutions 

(C, v") = Z, ( - q,, q:(cri + n2n2)-i) e-(Qi+n2nP)id sin nn(z + 1) (5 -22) 

which make no contribution to the temperature or vertical velocity fields. These, and 
another solution quadratic in z associated with n = 0, may be derived from the 
system (3.2)-(3.6) in which y -+ g, q-f qo and R -?- R,. In all, this provides four infinite 
sets of coefficients to be fixed by the four boundary conditions (2.9) at  y = 0 and 
matching with the core solution. Unfortunately the vertical eigenfunctions involved 
in (5.20) and (5.22) are not orthogonal and so a numerical method would be required 
to determine the values of the coefficients, although it can be assumed that only the 
even eigenfunctions in 6 and the odd ones in 12 and v" will be generated. If the solution 
is to match with that in the core as i j +  co it must be possible to specify ti3 and a", as 
in (4.16), so that although an infinite number of eigenfunctions will be required it 
appears that, in principle at least, a",, a",, g1 and 6, provide the necessary first set of 
four coefficients equivalent to the four conditions at  i j  = 0. Any other scenario in 
which the core amplitude function does not satisfy the conditions (4.9) at  Y = k 1 
would imply an inconsistency in the neighbourhood of the sidewall. 

The values of q and 8 at the critical point now follow from q, and R, of $4.1 and 
the transformation 9cRe+R2. Thus at  the onset of convection in a rigid channel 

R, N 1707.76+139.42~-~, q, N 3.117-0.5127a-2 as a+m. (5.23) 

- 

(n = 1,2  , , . . ), 

These results are shown in figures 2 and 3. 

6. Asymptotic results for the rigid channel: a+O 
6.1. Conducting sidewalls 

At small aspect ratios it must be anticipated that the conditions at the upper and 
lower boundaries do not greatly influence the onset of convection, suggesting that the 
stress-free scalings of the neutral curve given by (4.20) are still relevant. In the ' core' 
region JYJ < 1,  Jz/ < +, which excludes the top and bottom of the channel, 

( Y ,  2 )  + . . ., 

and at  leading order substitution into (3.2)-(3.6) gives 

Thus R, = m47c4/16 and 
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where 6 is an arbitrary function of z to be determined. Corresponding solutions for 
the other variables are 

where 

Pl = P ( z ) ,  u, = &a;"(,- l ) P ( z ) ,  

v, = (QP-;Y-+)q,P.++n cos-(Y+1)-1 -, ( ;= )2 } (6.4) 

- 3rnz d& 
4% dz 

p = - -  (( - 1)m - 1)-. 

* 
Note that for odd values of m the flux condition (2.10) implies that &(a) = @( -;) and 
for even values P = 0. 

At second order 8, is found to satisfy 

- 0 (Y = f l ) .  (6.6) 
a w ,  el. a 2 0  a 4 0 ,  

a y 4  ay2 dz ay2 
RIO, = 2ql-+R,Q1--, @,EL- -- 

This system has a solution only if 

d 2 8  
3 q ~ 1 ( ( - 1 ) ~ - 1 ) ~ + ( ~ 2 ~ 2 q ~ - ~ , ) ~  dz = 0, (6.7) 

so that for even values of m a non-trivial solution requires R, = Wn2q1 in which case 
a minimum is achieved at  q1 = 0. For odd values of rn, including the leading mode 
associated with m = 1, the boundary conditions for 6 are needed in order to solve 
(6.7). 

At the base of the channel there is an adjustment in an end zone where 
2 = (%++)/a = O(l) ,  

but it is easily established that solutions for Wand 8 of order a-l and a respectively 
cannot depend on 2, in which case 6( -+) = 0. Similarly 6($) = 0 and then, from 
(6.7), 8 = sinnz(z++) for n = 1, 2, ..., where 

R, = +n2q1(rn2+ 12n2q;2). (6.8) 

This coincides with the stress-free result (4.24) for n = 1 and so the asymptotic 
formulae (4.25) also apply to the rigid channel and are shown in figures 2 and 3. It 
may be verified that the end-zone solution where 2 = O(1) is actually generated by 
the core temperature gradient &( -$) so that locally (8, U,  V ,  W )  - (a2&, a-@, 9, @) 

6.2, Insulating sidewalls 
( Y , Z ) .  

Again the stress-free scalings (4.28) may be assumed and in the core 

[ i] = [ji] :I a2 W3 ( Y , z ) +  ..., (6.9) 

p3 
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a+O. At leading order substitution into (3.2)-(3.6) gives 
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8, = o"(z),  P, = ii(z), u, = &i(Y2-- l)P(z),  

(6.10) 
d 6  d2P 

W, = +( Y 2 -  1) q z ) ,  

where @ = (@/dz)-R, 6 and the condition on V, at  Y = 1 further implies V, = 0 
and 

-_ d2@ ql(w+R16)  = 0. 
dz2 

(6.11) 

The flux condition (2.10) implies that @(t) = @( -4). Similar solutions are obtained 
for @,, W, etc. a t  second order, but at  third order it is found that 

so that the thermal boundary conditions at  Y = f 1 can be satisfied only if 

(6.12) 

(6.13) 

An assumption that 6 and i? remain !on-zero as z j - 4  would imply a local 
solution near the base in which (0, W )  - (8, W )  ( Y ,  2) but it is easily shown that if 
W and o  ̂ vanish on 2 = 0,  they vanish for all 2. Hence m( -4) = 6( -4) = 0 and by 
a similar argument w(4) = 6($) = 0. The coupled equations (6.11), (6.13) can now be 
solved to give 

(6, @) = a(1, -q1R,/(n2n2+~,))sinnn(z+~), (6.14) 

where R, = 3(q1+2n2n2+n4n441;1) (n = 1,2,  ...). (6.15) 

At the onset of convection for the vertical mode n, ql = n2n2 and R, = 12n2n2 so 
that the leading approximations to the critical Rayleigh number and wavenumber 
(n = 1) am given by the stress-free results (4.32). 

7. Discussion 
A two-dimensional Galerkin formulation of the Boussinesq equations in a rigid 

channel allows the cross-channel velocity to be taken into account and predicts 
values of the critical wavenumber and Rayleigh number in good agreement with 
asymptotic solutions for small and large aspect ratios. It seems likely that the 
numerical results are least accurate for these extreme cases where the end structures 
described in $55 and 6 are presumably difficult to model accurately without specially 
selected trial functions. However, the results displayed in figures 2 and 3 provide an 
overall description of the onset of convection in a rigid channel for the complete 
range of aspect ratios. Even in wide channels the Galerkin procedure is sufficiently 
accurate to predict the three-dimensional motion near the sidewalls also charac- 
teristic of the idealized model with stress-free horizontal boundaries but omitted 
from the earlier discussion of the problem by Davies-Jones (1970). The flow reversal 
near the sidewalls is seen in numerical simulations of Rayleigh-Be'nard convection in 
long, rigid boxes described by Oertel (1980). Results for convection in a nitrogen- 
filled box of length ten times and width four times its height clearly show the thin 
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regions of vertical flow reversal near the sidewalls. They arise a t  aspect ratios for 
which the critical wavelength exceeds its value for the corresponding infinite layer. 
For the rigid channel the maximum wavelength occurs when a x 1.3. 

It is intended that the present theory will provide a basis for the investigation of 
weakly nonlinear effects in a long rigid box. Current theories of wavenumber 
selection at finite amplitudes (Cross et al. 1983) are restricted to two-dimensional 
models with stress-free horizontal boundaries, but an extension of the present theory 
would allow a realistic comparison with experimental work, which predicts that for 
low-Prandtl-number fluids the number of rolls decreases as the Rayleigh number is 
raised. 

This work was carried out with the support of an SERC research grant. 

Appendix. Galerkin integrals 

kt, (m, E ) ,  kt, (m, n) : 
The integrals appearing in (3.17)-(3.19) may be evaluated as follows, where 

V,V2 --q2 Vkdydz = 0 (n 4= R),  La!.; - ) 
= &-3p:+~2(Sn-q2)-~a-1Snpm(2-pmcoth$.4m)coth$.4m 

= 2 a - 9 , ~  

(n = ~ , m  = %), 

(A 1)  
Pk Pk coth bfi -pm coth bm) (n  = n, m =+ m), 
m Pa 

where 6, = 2q2 + 4n27t2, 

where 

- azw, 
dz = 327c21,(m, rsi, n, a) 

(A 3)  
( -  l)'+mA3,pk%(2m- 1) (4E2n2+6m-q2) tanh;Ancothbfi 

(A: - 16n"1x4) (pf - (2m - l)47c4) 
I l (m,  m, n, %) = 

and 8, = 2q2 +4aa-'(2m- 1)*n2, 

= a(A4,+q2(6m-q2)-6mAn(2-A,tanh~Ah,)tanh~An) 

= 8~13,- (A ,  tanh&-A, tanh&) 

(m = m, n = E ) ,  

(A 4) 
A; A; 

A4, - h4, (m = m,n 4 E ) ,  

= 4na12(%, n) (m = a) 

where 
(-1)%A;(1-2n) 

12(%,n) = 
A; - (2n- 1)4n4 



Onset of Rayleigh-Be'nard convection in a rigid channel 279 

= 0 (otherwise), 

= Q x d , ( n ,  %) (m = ?a). 
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